Logo ifraf


Claude Cohen Tannoudji

Prix Nobel en 1997 pour le ralentissement et le piégeage des atomes par la lumière laser.

Ses travaux sont à la source des recherches actuelles de l'IFRAF.



Partenaires

ENS
P6
P13
P11
IO
Observatoire
CNRS

Rechercher

Sur ce site

Visiteurs connectés : 36


Accueil du site > Thèses et habilitations > Thesis defense of Lauriane Chomaz (LKB)

Thesis defense of Lauriane Chomaz (LKB)

Monday, November 10 at 14:30 in Room No. 2 (Building A) of the College de France - 11 Place Marcellin Berthelot - 75005 Paris

Coherence and superfluidity of Bose gases in reduced dimensions : from harmonic traps to uniform fluids.

The dimensionality of a system strongly affects its physical properties ; the phase transitions that take place and the type of order that arises depend on the dimension. In low dimensional systems phase coherence proves more difficult to achieve as both thermal and quantum fluctuations play a stronger role. The two-dimensional Bose fluid is of particular interest as even if full order is precluded, a residual « quasi-long » range order arises at low temperatures. Then two ingredients have a significant effect on the state of the system : (i) the finite size of a real system enables one to recover of a macroscopic occupation of a single-particle state ; (ii) the interactions between particles lead to the emergence of a non-conventional type of phase transition toward a superfluid state.

In this thesis, we present an experimental study of the two-dimensional (2D) Bose gas using two different energy landscapes to trap our atoms. In the first part, we use the spatial dependence of some local properties of an inhomogeneous gas to characterize the state of the equivalent homogeneous system. We extract its equation of state with a high accuracy from the gas density profiles and test its superfluid behavior by measuring the heating induced by a moving local perturbation. In the second part, we observe and characterize the emergence of an extended phase coherence in a 2D homogeneous gas in particular via a 3D-to-2D dimensional crossover. We investigate the dynamical establishment of the coherence via a rapid crossing of the dimensional crossover and observe topological defects in the final superfluid state. We compare our findings with the predictions for the Kibble—Zurek mechanism.

thesis was conducted at the laboratoire Kastler Brossel under the supervision of Jean Dalibard, within the team « quantum gases in two dimensions ».

Dans la même rubrique :