Logo ifraf


Claude Cohen Tannoudji

Prix Nobel en 1997 pour le ralentissement et le piégeage des atomes par la lumière laser.

Ses travaux sont à la source des recherches actuelles de l'IFRAF.



Partenaires

ENS
P6
P13
P11
IO
Observatoire
CNRS

Rechercher

Sur ce site

Visiteurs connectés : 31


Accueil du site > Séminaires > LKB > Quantum Complexity in Ultracold Quantum Systems : exposé informel de Lincoln Carr (Colorado School of Mines)

Quantum Complexity in Ultracold Quantum Systems : exposé informel de Lincoln Carr (Colorado School of Mines)

Jeudi 23 juin 2016 à partir de 11 heures dans la salle de réunion du siège de l’IFRAF, au 4e étage du batiment Rataud. Ecole normale superieure 45 rue d’Ulm 75005 PARIS.

ABSTRACT

Ultracold quantum simulators have proven a tremendous success. These analog quantum computers have allowed us to explore diverse quantum many-body phenomena from quantum phase transitions to the Kibble-Zurek mechanism to many-body localization.

We propose a new direction for analog quantum computations, quantum complexity. Despite hundreds of thousands of empirical examples of complexity ranging from complex networks like the internet to diverse mixed geometry microbial communities like the microbiome found in the human gut, we have no first principles theory of complexity
– we do not know why nature seems to prefer complexity. Moreover, unlike the other senses of the word “macroscopicity” we do not have a good sense of how classical complexity, associated with macroscopic classical systems, results from the underlying quantum dynamics
– so we do not know where this preference first appears at the quantum level. In this talk, we principally explore two topics in this untested regime of quantum mechanics.

First, we propose a new set of quantum measures for complex quantum dynamics, namely quantum mutual information complex networks. As a proof of principle, we show that complex network measures like clustering reproduce and improve upon traditional correlation-based measures for the critical point of quantum phase transitions in transverse Ising and Bose-Hubbard models. Second, we identify new concrete regimes of quantum complexity in quantum simulators implementing molecular Hubbard Hamiltonians.

For singlet sigma molecules we calculate specific parameter sets for five kinds of molecules either already quantum degenerate and at unit filling in optical lattices in lab experiments, or close to quantum degeneracy : LiCs, NaK, RbCs, KRb, RbCs, and LiNa.

Finally, we briefly outline progress in two other areas of quantum complexity : new regimes accessible in many-body symmetric top molecular systems, and quantum games of life.

Dans la même rubrique :